

Balkan MO 2008

Macedonia

1 Given a scalene acute triangle $A B C$ with $A C>B C$ let F be the foot of the altitude from C. Let P be a point on $A B$, different from A so that $A F=P F$. Let H, O, M be the orthocenter, circumcenter and midpoint of $[A C]$. Let X be the intersection point of $B C$ and $H P$. Let Y be the intersection point of $O M$ and $F X$ and let $O F$ intersect $A C$ at Z. Prove that F, M, Y, Z are concyclic.
$\boxed{2}$ Is there a sequence a_{1}, a_{2}, \ldots of positive reals satisfying simoultaneously the following inequalities for all positive integers n : a) $a_{1}+a_{2}+\ldots+a_{n} \leq n^{2}$ b) $\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}} \leq 2008$?

53 Let n be a positive integer. Consider a rectangle $(90 n+1) \times(90 n+5)$ consisting of unit squares. Let S be the set of the vertices of these squares. Prove that the number of distinct lines passing through at least two points of S is divisible by 4 .

44 Let c be a positive integer. The sequence a_{1}, a_{2}, \ldots is defined as follows $a_{1}=c, a_{n+1}=$ $a_{n}^{2}+a_{n}+c^{3}$ for all positive integers n. Find all c so that there are integers $k \geq 1$ and $m \geq 2$ so that $a_{k}^{2}+c^{3}$ is the m th power of some integer.

